FP3 Differential Equations

1. June 2010 qu. 4
(i) Use the substitution $y=x z$ to find the general solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=x \cos \left(\frac{y}{x}\right)$, giving your answer in a form without logarithms.
(ii) Find the solution of the differential equation for which $y=\pi$ when $x=4$.
2. June 2010 qu. 6
(i) Find the general solution of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+17 y=17 x+36$.
(ii) Show that, when x is large and positive, the solution approximates to a linear function, and state its equation.
3. Jan 2010 qu. 3

Use the integrating factor method to find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\mathrm{e}^{-3 x}
$$

for which $y=1$ when $x=0$. Express your answer in the form $y=\mathrm{f}(x)$.
4. Jan 2010 qu. 6

The variables x and y satisfy the differential equation $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+16 y=8 \cos 4 x$.
(i) Find the complementary function of the differential equation.
(ii) Given that there is a particular integral of the form $y=p x \sin 4 x$, where p is a constant, find the general solution of the equation.
(iii) Find the solution of the equation for which $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
5. June 2009 qu. 4

The differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{1-x^{2}} y=(1-x)^{\frac{1}{2}}$, where $|x|<1$,
can be solved by the integrating factor method.
(i) Use an appropriate result given in the List of Formulae (MF1) to show that the integrating factor can be written as $\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$.
(ii) Hence find the solution of the differential equation for which $y=2$ when $x=0$, giving your answer in the form $y=\mathrm{f}(x)$.
6. June 2009 qu. 5

The variables x and y satisfy the differential equation $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=\mathrm{e}^{3 x}$.
(i) Find the complementary function.
(ii) Explain briefly why there is no particular integral of either of the forms $y=k \mathrm{e}^{3 x}$ or $y=k x \mathrm{e}^{3 x}$.
(iii) Given that there is a particular integral of the form $y=k x^{2} \mathrm{e}^{3 x}$, find the value of k.
7. Jan 2009 qu. 4

Find the general solution of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=65 \sin 2 x$.
8. Jan 2009 qu. 5

The variables x and y are related by the differential equation $x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x y+x+1$.
(i) Use the substitution $y=u-\frac{1}{x}$, where u is a function of x, to show that the differential equation may be written as $x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=u$.
(ii) Hence find the general solution of the differential equation (A), giving your answer in the form $y=\mathrm{f}(x)$.
9. June 2008 qu. 3
(i) Use the substitution $z=x+y$ to show that the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+3}{x+y-1} \quad \text { (A) } \quad \text { may be written in the form } \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{2(\mathrm{z}+1)}{\mathrm{z}-1} \tag{3}
\end{equation*}
$$

(ii) Hence find the general solution of the differential equation (A).
10. June 2008 qu. 8
(i) Find the complementary function of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=\operatorname{cosec} x$.
(ii) It is given that $y=p(\ln \sin x) \sin x+q x \cos x$, where p and q are constants, is a particular integral of this differential equation.
(a) Show that $p-2(p+q) \sin ^{2} x \equiv 1$.
(b) Deduce the values of p and q.
(iii) Write down the general solution of the differential equation. State the set of values of x, in the interval $0 \leq x \leq 2 \pi$, for which the solution is valid, justifying your answer.
11. Jan 2008 qu. 2

Find the general solution of the differential equation $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=4 x$.
12. Jan 2008 qu. 5
(i) Find the general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin 2 x$,
expressing y in terms of x in your answer.
In a particular case, it is given that $y=\frac{2}{\pi}$ when $x=\frac{1}{4} \pi$.
(ii) Find the solution of the differential equation in this case.
(iii) Write down a function to which y approximates when x is large and positive.
13. June 2007 qu. 3

Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=e^{3 x} \tag{6}
\end{equation*}
$$

14. June 2007 qu. 8
(i) Find the general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=\cos ^{3} x$ expressing y in terms of x in your answer.
(ii) Find the particular solution for which $y=2$ when $x=\pi$.
15. Jan 2007 qu. 4

The variables x and y are related by the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-y^{2}}{x y}$.
(i) Use the substitution $y=x z$, where z is a function of x, to obtain the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{1-2 z^{2}}{z} \tag{3}
\end{equation*}
$$

(ii) Hence show by integration that the general solution of the differential equation (A) may be expressed in the form $x^{2}\left(x^{2}-2 y^{2}\right)=k$, where k is a constant.
16. Jan 2007 qu. 6

The variables x and y satisfy the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+3 y=2 x+1 \quad$ Find
(i) the complementary function,
(ii) the general solution.

In a particular case, it is given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
(iii) Find the solution of the differential equation in this case.
(iv) Write down the function to which y approximates when x is large and positive.
17. June 2006 qu. 4

Find the solution of the differential equation $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{x^{2} y}{1+x^{3}}=x^{2}$
for which $y=1$ when $x=0$, expressing your answer in the form $y=\mathrm{f}(x)$.
18. June 2006 qu. 6
(i) Find the general solution of the differential equation $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin x$.
(ii) Find the solution of the differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{3}$ when $x=0$.
19. Jan 2006 qu. 3
(i) By using the substitution $y^{3}=z$, find the general solution of the differential equation $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y^{3}=\mathrm{e}^{-x^{2}}, \quad$ giving y in terms of x in your answer.
(ii) Describe the behaviour of y as $x \rightarrow \infty$.
20. Jan 2006 qu. 8
(i) Find the general solution of the differential equation $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 k \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=0$, where k is a real constant, in each of the following cases,
(a) $|k|>2$
(b) $|k|<2$
(c) $k=2$
(ii) (a) In the case when $k=1$, find the solution for which $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=6$ when $t=0$.
(b) Describe what happens to x as $t \rightarrow \infty$ in this case, justifying your answer.

